
title date updated tags published by

Choosing	a
Path
Forward	for
IIIF	Audio
and	Video

2017-
02-02
21:00
-0500

2017-02-
02	21:00
-0500

iiif,
video,
audio,
api

false Jason
Ronallo

IIIF	is	working	to	bring	AV	resources	into	IIIF.	I	have	been	thinking	about	how	to	bring	to	AV	resources
the	same	benefits	we	have	enjoyed	for	the	IIIF	Image	and	Presentation	APIs.	The	initial	intention	of
IIIF,	especially	with	the	IIIF	Image	API,	was	to	meet	a	few	different	goals	to	fill	gaps	in	what	the	web
already	provided	for	images.	I	want	to	consider	how	video	works	on	the	web	and	what	gaps	still	need
to	be	filled	for	audio	and	video.

(readmore)

This	is	a	draft	and	as	I	consider	the	issues	more	I	will	make	changes	to	better	reflect	my	current
thinking.

Images

When	images	were	specified	for	the	web	the	image	formats	were	not	chosen,	created,	or	modified
with	the	intention	of	displaying	and	exploring	huge	multi-gigabit	images.	Yet	we	have	high	resolution
images	that	users	would	find	useful	to	have	in	all	their	detail.	So	the	first	goal	was	to	improve
performance	of	delivering	high	resolution	images.	The	optimization	that	would	work	for	viewing	large
high	resolution	images	was	already	available;	it	was	just	done	in	multiple	different	ways.	Tiling	large
images	is	the	work	around	that	has	been	developed	to	improve	the	performance	of	accessing	large
high	resolution	images.	If	image	formats	and/or	the	web	had	already	provided	a	solution	for	this
challenge,	tiling	would	not	have	been	necessary.	When	IIIF	was	being	developed	there	were	already
tiling	image	servers	available.	The	need	remained	to	create	standardized	access	to	the	tiles	to	aid	in
interoperability.	IIIF	accomplished	standardizing	the	performance	optimization	of	tiling	image	servers.
The	same	functionality	that	enables	tiling	can	also	be	used	to	get	regions	of	an	image	and	manipulate
them	for	other	purposes.	In	order	to	improve	performance	smaller	derivatives	can	be	delivered	for	use
as	thumbnails	on	a	search	results	page.

The	other	goal	for	the	IIIF	Image	API	was	to	improve	the	sharing	of	image	resources	across
institutions.	The	situation	before	was	both	too	disjointed	for	consumers	of	images	and	too	complex	for
those	implementing	image	servers.	IIIF	smoothed	the	path	for	both.	Before	IIIF	there	was	not	just	one

http://iiif.io/community/groups/av/


way	of	creating	and	delivering	tiles,	and	so	trying	to	retrieve	image	tiles	from	multiple	different
institutions	could	require	making	requests	to	multiple	different	kinds	of	APIs.	IIIF	solves	this	issue	by
providing	access	to	technical	information	about	an	image	through	an	info.json	document.	That
information	can	then	be	used	in	a	standardized	way	to	extract	regions	from	an	image	and	manipulate
them.	The	information	document	delivers	the	technical	properties	necessary	for	a	client	to	create	the
URLs	needed	to	request	the	given	sizes	of	whole	images	and	tiles	from	parts	of	an	image.	Having	this
standard	accepted	by	many	image	servers	has	meant	that	institutions	can	have	their	choice	of	image
servers	based	on	local	needs	and	infrastructure	while	continuing	to	interoperate	for	various	image
viewers.

So	it	seems	as	if	the	main	challenges	the	IIIF	Image	API	were	trying	to	solve	were	about	performance
and	sharing.	The	web	platform	had	not	already	provided	solutions	so	they	needed	to	be	developed.
IIIF	standardized	the	pre-existing	performance	optimization	pattern	of	image	tiling.	Through	publishing
information	about	available	images	in	a	standardized	way	it	also	improved	the	ability	to	share	images
across	institutions.

What	other	general	challenges	were	trying	to	be	solved	with	the	IIIF	Image	API?

Video	and	Audio

The	challenges	of	performance	and	sharing	are	the	ones	I	will	take	up	below	with	regards	to	AV
resources.	How	does	audio	and	video	currently	work	on	the	web?	What	are	the	gaps	that	still	need	to
be	filled?	Are	there	performance	problems	that	need	to	be	solved?	Are	there	challenges	to	sharing
audio	and	video	that	could	be	addressed?

AV	Performance

The	web	did	not	gain	native	support	for	audio	and	video	until	later	in	its	history.	For	a	long	time	the
primary	ways	to	deliver	audio	and	video	on	the	web	used	Flash.	By	the	time	video	and	audio	did
become	native	to	the	web	many	of	the	performance	considerations	of	media	formats	already	had
standard	solutions.	Video	formats	have	such	advanced	lossy	compression	that	they	can	sometimes
even	be	smaller	than	an	image	of	the	same	content.	(Here	is	an	example	of	a	screenshot	as	a
lossless	PNG	being	much	larger	than	a	video	of	the	same	page	including	additional	content.)	Tweaks
to	the	frequency	of	full	frames	in	the	stream	and	the	bitrate	for	the	video	and	audio	can	further	help
improve	performance.	A	lot	of	thought	has	been	put	into	creating	AV	formats	with	an	eye	towards
improving	file	size	while	maintaining	quality.	Video	publishers	also	have	multiple	options	for	how	they
encode	AV	in	order	to	strike	the	right	balance	for	their	content	between	compression	and	quality.

http://iiif.io/api/image/2.1/#image-information
https://sidbala.com/h-264-is-magic/


Progressive	Download

In	addition	video	and	audio	formats	are	designed	to	allow	for	progressive	download.	The	whole	media
file	does	not	need	to	be	downloaded	before	part	of	the	media	can	begin	playing.	Only	the	beginning	of
the	media	file	needs	to	be	downloaded	before	a	client	can	get	the	necessary	metadata	to	begin
playing	the	video	in	small	chunks.	The	client	can	also	quickly	seek	into	the	media	to	play	from	any
arbitrary	point	in	time	without	downloading	the	portions	of	the	video	that	have	come	before	or	after.
Segments	of	the	media	can	be	buffered	to	allow	for	smooth	playback.	Requests	for	these	chunks	of
media	can	be	done	with	a	regular	HTTP	web	server	like	Apache	or	Nginx	using	byte	range	requests.
The	web	server	just	needs	minimal	configuration	to	allow	for	byte	range	requests	that	can	deliver	just
the	partial	chunk	of	bytes	within	the	requested	range.	Progressive	download	means	that	a	media	file
does	not	have	to	be	pre-segmented--it	can	remain	a	single	whole	file--and	yet	it	can	behave	as	if	it
has	been	segmented	in	advance.	Progressive	download	effectively	solves	many	of	the	issues	with	the
performance	of	the	delivery	of	very	long	media	files	that	might	be	quite	large	in	size.	Media	files	are
already	structured	in	such	a	way	that	this	functionality	of	progressive	download	is	available	for	the
web.	Progressive	download	is	a	performance	optimization	similar	to	image	tiling.	Since	these	media
formats	and	HTTP	already	effectively	solve	the	issue	of	quick	playback	of	media	without	downloading
the	whole	media	file,	there	is	no	need	for	IIIF	to	look	for	further	optimizations	for	these	media	types.
Additionally	there	is	no	need	for	special	media	servers	to	get	the	benefits	of	the	improved
performance.

Quality	of	Service

While	progressive	download	solves	many	of	the	issues	with	delivery	of	AV	on	the	web	based	on	how
the	media	files	are	constructed,	it	is	a	partial	solution.	The	internet	does	not	provide	assurances	on
quality	of	service.	A	mobile	device	at	the	edge	of	the	range	of	a	tower	will	have	more	latency	in
requesting	each	chunk	of	content	than	a	wired	connection	at	a	large	research	university.	Even	over
the	same	stable	network	the	time	it	takes	for	a	segment	of	media	to	be	returned	can	fluctuate	based
on	network	conditions.	This	variability	can	lead	to	media	playback	stuttering	or	stalling	while	retrieving
the	next	segment	or	taking	too	much	time	to	buffer	enough	content	to	achieve	smooth	playback.
There	are	a	couple	different	solutions	to	this	that	have	been	developed.

With	only	progressive	download	at	your	disposal	one	solution	is	to	allow	the	user	to	manually	select	a
rendition	to	play	back.	The	same	media	content	is	delivered	as	several	separate	files	at	different
resolutions	and/or	bitrates.	Lower	resolutions	and	bitrates	mean	that	the	segments	will	be	smaller	in
size	and	faster	to	deliver.	The	media	player	is	given	a	list	of	these	different	renditions	with	labels	and
then	provides	a	control	for	the	user	to	choose	the	version	they	prefer.	The	user	can	then	select
whether	they	want	to	watch	a	repeatedly	stalling,	but	high	quality,	video	or	would	rather	watch	a	lower
resolution	video	playing	back	smoothly.	Many	sites	implement	this	pattern	as	a	relatively	simple	way

https://en.wikipedia.org/wiki/Progressive_download
https://en.wikipedia.org/wiki/Byte_serving


to	take	into	account	that	different	users	will	have	different	network	qualities.	The	problem	I	have	found
with	this	solution	for	progressive	download	video	is	that	I	am	often	not	the	best	judge	of	network
conditions.	I	have	to	fiddle	with	the	setting	until	I	get	it	right	if	I	ever	do.	I	can	set	it	higher	than	it	can
play	back	smoothly	or	select	a	much	lower	quality	than	what	my	current	network	could	actually
handle.	I	have	also	found	sites	that	set	my	initial	quality	level	much	lower	than	my	network	connection
can	handle	which	results	in	a	lesser	experience	until	I	make	the	change	to	a	higher	resolution	version.
That	it	takes	me	doing	the	switching	is	annoying	and	distracting	from	the	content.

Adaptive	Bitrate	Formats

To	improve	the	quality	of	the	experience	while	providing	the	highest	quality	rendition	of	the	media
content	that	the	network	can	handle,	other	delivery	mechanisms	were	developed.	I	will	cover	in
general	terms	a	couple	I	am	familiar	with,	that	have	the	largest	market	share,	and	that	were	designed
for	delivery	over	HTTP.	For	these	formats	the	client	measures	network	conditions	and	delivers	the
highest	quality	version	that	will	lead	to	smooth	playback.	The	client	monitors	how	long	it	takes	to
download	each	segment	as	well	as	the	duration	of	the	current	buffer.	(Sometimes	the	client	also
measures	the	size	of	the	video	player	in	order	to	select	an	appropriate	resolution	rendition.)	The	client
can	then	adapt	on	the	fly	to	network	conditions	to	play	the	video	back	smoothly	without	user
intervention.	This	is	why	it	is	called	"smooth	streaming"	in	some	products.

For	adaptive	bitrate	formats	like	HLS	and	MPEG-DASH	what	gets	initially	delivered	is	a	manifest	of
the	available	renditions/adaptations	of	the	media.	These	manifests	contain	pointers	for	where	(which
URL)	to	find	the	media.	These	could	be	whole	media	files	for	byte	range	requests,	media	file
segments	as	separate	files,	or	even	in	the	case	of	HLS	a	further	manifest/playlist	file	for	each
rendition/stream.	While	the	media	is	often	referred	to	in	a	manifest	with	relative	URLs,	it	is	possible	to
serve	the	manifest	from	one	server	and	the	media	files	(or	further	manifests)	from	a	different	server
like	a	CDN.

How	the	media	files	are	encoded	is	important	for	the	success	of	this	approach.	For	these	formats	the
different	representations	can	be	pre-segmented	into	the	same	duration	lengths	for	each	segment
across	all	representations.	In	a	similar	way	they	can	also	be	carefully	generated	single	files	that	have
full	frames	relatively	close	together	within	a	file	and	all	have	these	full	frames	synchronized	between
all	the	renditions	of	the	media.	For	instance	all	segments	could	be	six	seconds	with	an	iframe	every	2
seconds.	This	careful	alignment	of	segments	allows	for	switching	between	representations	without
having	glitchy	moments	where	the	video	stalls,	without	the	video	replaying	or	skipping	ahead	a
moment,	and	with	the	audio	staying	synchronized	with	the	video.

It	is	also	possible	in	the	case	of	video	to	have	one	or	more	audio	streams	separate	from	the	video
streams.	Separate	audio	streams	aligned	with	the	video	representations	will	have	small	download

https://en.wikipedia.org/wiki/Quality_of_experience#Telecommunications_and_Multimedia


sizes	for	each	segment	which	can	allow	a	client	to	decide	to	continue	to	play	the	audio	smoothly	even
if	the	video	is	temporarily	stalled	or	reduced	in	quality.	One	use	case	for	this	audio	stream
performance	optimization	is	the	delivery	of	alternative	language	tracks	as	separate	audio	streams.
The	video	and	audio	bitrates	can	be	controlled	by	the	client	independently.

In	order	for	adaptive	formats	like	this	to	work	all	of	the	representations	need	to	have	the	next	required
segment	ready	on	the	server	in	case	the	client	decides	to	switch	up	or	down	bitrates.	While	cultural
heritage	use	cases	that	IIIF	considers	do	not	include	live	streaming	broadcasts,	the	number	of
representations	that	all	need	to	be	encoded	and	available	at	the	same	time	effects	the	"live	edge"--
how	close	to	real-time	the	stream	can	get.	If	segments	are	available	in	only	one	high	bitrate	rendition
then	the	client	may	not	be	able	to	keep	up	with	a	live	broadcast.	If	all	the	segments	are	not	available
for	immediate	delivery	then	it	can	lead	to	playback	issues.

The	manifests	for	adaptive	bitrate	formats	also	include	other	helpful	technical	information	about	the
media.	(For	HLS	the	manifest	is	called	a	master	playlist	and	for	MPEG-DASH	a	Media	Presentation
Description.)	Included	in	these	manifests	can	be	the	duration	of	the	media,	the	maximum/minimum
height	and	width	of	the	representations,	the	mimetype	and	codecs	(including	MP4	level)	of	the	video
and	audio,	the	framerate	or	sampling	rate,	and	lots	more.	Most	importantly	for	quality	of	experience
switching,	each	representation	includes	a	number	for	its	bandwidth.	There	are	cases	where	content
providers	will	deliver	two	video	representations	with	the	same	height	and	width	and	different	bitrates
to	switch	between.	In	these	cases	it	is	a	better	experience	for	the	user	to	maintain	the	resolution	and
switch	down	a	bandwidth	than	to	switch	both	resolution	and	bandwidth.	The	number	of
representations--the	ladder	of	different	bandwidth	encodes--can	be	quite	extensive	for	advanced
cases	like	Netflix	over-the-top	(OTT	aka	internet)	content	delivery.	These	adaptive	bitrate	solutions
are	meant	to	scale	for	high	demand	use	cases.	The	manifests	can	even	include	information	about
sidecar	or	segmented	subtitles	and	closed	captions.	(One	issue	with	adaptive	formats	is	that	they
may	not	play	back	across	all	devices,	so	many	implementations	will	still	provide	progressive
download	versions	as	a	fallback.)	Manifests	for	adaptive	formats	include	the	kind	of	technical
information	that	is	useful	for	clients.

Because	there	are	existing	standards	for	the	adaptive	bitrate	pattern	that	have	broad	industry	and
client	support,	there	is	no	need	to	attempt	to	recreate	these	formats.

AV	Performance	Solved

All	except	the	most	advanced	video	on	demand	challenges	have	current	solutions	through	ubiquitous
video	formats	and	adaptive	bitrate	streaming.	As	new	formats	like	VP9	increase	in	adoption	the
situation	for	performance	will	improve	even	further.	These	formats	have	bitrate	savings	through	more
advanced	encoding	that	greatly	reduces	file	sizes	while	maintaining	quality.	This	will	mean	that



adaptive	bitrate	formats	are	likely	to	require	fewer	renditions	than	are	typically	published	currently.
Note	though	that	in	some	cases	smaller	file	sizes	and	faster	decoding	comes	at	the	expense	of	much
slower	encoding	when	trying	to	keep	a	good	quality	level.

There	is	no	need	for	the	cultural	heritage	community	to	try	to	solve	performance	challenges	when	the
expert	AV	community	and	industry	has	developed	advanced	solutions.

Parameterized	URLs	and	Performance

One	of	the	proposals	for	providing	a	IIIF	AV	API	alongside	the	Image	API	involves	mirroring	the
existing	Image	API	by	providing	parameters	for	segmenting	and	transforming	of	media.	I	will	call	this
the	"parameterized	approach."	One	way	of	representing	this	approach	is	this	URL:

	http://server/prefix/identifier/timeRegion/spaceRegion/timeSize/spaceSize/rotation/qualit

y.format	

You	can	see	more	about	this	type	of	proposal	here	and	here.	The	parameters	after	the	identifier	and
before	the	quality	would	all	be	used	to	transform	the	media.

For	the	Image	API	the	parameterized	approach	for	retrieving	tiles	and	other	derivatives	of	an	image
works	as	an	effective	performance	optimization	for	delivery.	In	the	case	of	AV	having	these
parameters	does	not	improve	performance.	It	is	already	possible	to	seek	into	progressive	download
and	adaptive	bitrate	formats.	There	is	not	the	same	need	to	tile	or	zoom	into	a	video	as	there	is	for	a
high	definition	image.	A	good	consumer	monitor	will	show	you	as	full	a	resolution	as	you	can	get	out
of	most	video.

And	these	parameters	do	not	actually	solve	the	most	pressing	media	delivery	performance	problems.
The	parameterized	approach	probably	is	not	optimizing	for	bitrate	which	is	one	of	the	most	important
settings	to	improve	performance.	Having	a	bitrate	parameter	within	a	URL	would	be	difficult	to
implement	well.	Bitrate	could	significantly	increase	the	size	of	the	media	or	increase	visible	artifacts	in
the	video	or	audio	beyond	usability.	Would	the	audio	and	video	bitrates	be	controlled	separately	in	the
parameterized	approach?	Bitrate	is	a	crucially	important	parameter	for	performance	and	not	one	I
think	you	would	put	into	the	hands	of	consumers.	It	will	be	especially	difficult	as	bitrate	optimization
for	video	on	demand	is	slow	and	getting	more	complicated.	In	order	to	optimize	variable	bitrate
encoding	2-pass	encoding	is	used	and	slower	encoding	settings	can	further	improve	quality.	With	new
formats	with	better	performance	for	delivery,	bitrate	is	reduced	for	the	same	quality	while	encoding	is
much	slower.	Advanced	encoding	pipelines	have	been	developed	that	perform	metrics	on	perceptual
difference	so	that	each	video	or	even	section	of	a	video	can	be	encoded	at	the	lowest	bitrate	that	still
maintains	the	desired	quality	level.	Bitrate	is	where	performance	gains	can	be	made.

https://github.com/IIIF/iiif-av/issues/50#issuecomment-260736537
https://gist.github.com/tomcrane/34180dc6c5c1caf7e244ffd12e64c389#the-parameter-space-of-an-av-api


The	only	functionality	proposed	for	IIIF	AV	that	I	have	seen	that	might	be	helped	by	the	parameterized
approach	is	download	of	a	time	segment	of	the	video.	This	is	specific	to	download	of	just	that	time
segment.	Is	this	use	case	big	enough	to	be	seriously	considered	for	the	amount	of	complexity	it	adds?
Why	is	download	of	a	time	segment	crucial?	Why	would	most	cases	not	be	met	with	just	skipping	to
that	section	to	play?	Or	can	the	need	be	met	with	downloading	the	whole	video	in	those	cases	where
download	is	really	necessary?	If	needed	any	kind	of	time	segment	download	use	case	could	live	as	a
separate	non-IIIF	service.	Then	it	would	not	have	any	expectation	of	being	real-time.	I	doubt	most
would	really	see	the	need	to	implement	a	download	service	like	this	if	the	need	can	be	met	some
other	way.	In	those	cases	where	real-time	performance	to	a	user	does	not	matter	those	video
manipulations	could	be	done	outside	of	IIIF.	For	any	workflow	that	needs	to	use	just	a	portion	of	a
video	the	manipulation	could	be	a	pre-processing	step.	In	any	case	if	there	is	really	the	desire	for	a
video	transformation	service	it	does	not	have	to	be	the	IIIF	AV	API	but	could	be	a	separate	service	for
those	who	need	it.

Most	of	the	performance	challenges	with	AV	have	already	been	solved	via	progressive	download
formats	and	adaptive	bitrate	streaming.	Remaining	challenges	not	fully	solved	with	progressive
download	and	adaptive	bitrate	formats	include	live	video,	server-side	control	of	quality	of	service
adaptations,	and	greater	compression	in	new	codecs.	None	of	these	are	the	types	of	performance
issues	the	cultural	heritage	sector	ought	to	try	to	take	on,	and	the	parameterized	approach	does	not
contribute	solutions	to	these	remaining	issues.	Beyond	these	rather	advanced	issues,	performance	is
a	solved	problem	that	has	had	a	lot	of	eyes	on	it.

If	the	parameterized	approach	is	not	meant	to	help	with	optimizing	performance	what	problem	is	it
trying	to	solve?	The	community	would	be	better	off	steering	clear	of	this	trap	of	trying	to	optimize	for
performance	and	instead	focus	on	problems	that	still	need	to	be	solved.	The	parameterized	approach
is	sticking	with	a	performance	optimization	pattern	that	does	not	add	anything	for	AV.	It	has	a
detrimental	fixation	on	the	bitstream	that	does	not	work	for	AV	especially	as	adaptive	bitrate
segmented	formats	are	concerned.	It	appears	motivated	by	some	kind	of	purity	of	approach	rather
than	taking	into	account	the	unique	attributes	of	AV	and	solving	these	particular	challenges	well.

AV	Sharing

The	other	challenge	a	standard	can	help	with	is	sharing	of	AV	across	institutions.	If	the	parameterized
approach	does	not	solve	a	performance	problem,	then	what	about	sharing?	If	we	want	to	optimize	for
sharing	and	have	the	greatest	number	of	institutions	sharing	their	AV	resources,	then	there	is	still	no
clear	benefit	for	the	parameterized	approach.	What	about	this	parameterized	approach	aids	in
sharing?	It	seems	to	optimize	for	performance,	which	as	we	have	seen	above	is	not	needed,	at	the
expense	of	the	real	need	to	improve	and	simplify	sharing.	There	are	many	unique	challenges	for



sharing	video	across	institutions	on	the	web	that	ought	to	be	considered	before	settling	on	a	solution.

One	of	the	big	barriers	to	sharing	is	the	complexity	of	AV.	Compared	to	delivery	of	still	images	video	is
much	more	complicated.	I	have	talked	to	a	few	institutions	that	have	digitized	video	and	have	none	of
it	online	yet	because	of	the	hurdles.	Some	of	the	complication	is	technical,	and	because	of	this
institutions	are	quicker	to	use	easily	available	systems	just	to	get	something	done.	As	a	result	many
fewer	institutions	will	have	as	much	control	over	AV	as	they	have	over	images.	It	will	be	much	more
difficult	to	gain	that	kind	of	control.	For	instance	with	some	media	servers	they	may	not	have	a	lot	of
control	over	how	the	video	is	served	or	the	URL	for	a	media	file.

Video	is	expensive.	Even	large	libraries	often	make	choices	about	technology	and	hosting	for	video
based	on	campus	providing	the	storage	for	it.	Organizations	should	be	able	to	make	the	choices	that
work	for	their	budget	while	still	being	able	to	share	in	as	much	as	they	desire	and	is	possible.

One	argument	made	is	that	many	institutions	had	images	they	were	delivering	in	a	variety	of	formats
before	the	IIIF	Image	API,	so	asking	for	similar	changes	to	how	AV	is	delivered	should	not	be	a	barrier
to	pursuing	a	particular	technical	direction.	The	difficulty	of	institutions	in	dealing	with	AV	can	not	be
minimized	in	this	way	as	any	kind	of	change	will	be	much	greater	and	asking	much	more.	The
complexity	and	costs	of	AV	and	the	choices	that	forces	should	be	taken	into	consideration.

An	important	question	to	ask	is	who	you	want	to	help	by	standardizing	an	API	for	sharing?	Is	it	only
for	the	well-resourced	institutions	who	self-host	video	and	have	the	technical	expertise?	If	it	is
required	that	resources	live	in	a	particular	location	and	only	certain	formats	be	used	it	will	lead	to
fewer	institutions	gaining	the	sharing	benefits	of	the	API	because	of	the	significant	barriers	to	entry.	If
the	desire	is	to	enable	wide	sharing	of	AV	resources	across	as	many	institutions	as	possible,	then	that
ought	to	lead	to	a	different	consideration	of	the	issues	of	complexity	and	cost.

One	issue	that	has	plagued	HTML5	video	from	the	beginning	is	the	inability	of	the	browser	vendors	to
agree	on	formats	and	codecs.	Early	on	open	formats	like	WebM	with	VP8	were	not	adopted	by	some
browsers	in	favor	of	MP4	with	H.264.	It	became	common	practice	out	of	necessity	to	encode	each
video	in	a	variety	of	formats	in	order	to	reach	a	broad	audience.	Each	source	would	be	listed	on	the
page	(on	a	source	element	within	a	video	element)	and	the	browser	picks	which	it	can	play.	HTML5
media	was	standardized	to	use	a	pattern	to	accommodate	the	situation	where	it	was	not	possible	to
deliver	a	single	format	that	could	be	played	across	all	browsers.	It	is	only	recently	that	MP4	with
H.264	has	been	able	to	be	played	across	all	current	browsers.	Only	after	Cisco	open	sourced	its
licensed	version	of	H.264	was	this	possible.	Note	while	the	licensing	situation	for	playback	has	been
improved	there	are	still	patent/licensing	issues	which	mean	that	some	institutions	still	will	not	create	or
deliver	any	MP4	with	H.264.



But	now	even	as	H.264	can	be	played	across	all	current	browsers,	there	are	still	changes	coming	that
mean	a	variety	of	formats	will	be	present	in	the	wild.	New	codecs	like	VP9	that	provide	much	better
compression	are	taking	off	and	have	been	adopted	by	most,	but	not	all,	modern	browsers.	The
advantages	of	VP9	are	that	it	reduces	file	size	such	that	storage	and	bandwidth	costs	can	be	reduced
significantly.	Encoding	time	is	increased	while	performance	is	improved.	And	still	other	new,	open
formats	like	AV1	using	the	latest	technologies	are	being	developed.	Even	audio	is	seeing	some
change	as	Firefox	and	Chrome	are	implementing	FLAC	which	will	make	it	an	option	to	use	a	lossless
codec	for	audio	delivery.

As	the	landscape	for	codecs	continues	to	change	the	decision	on	which	formats	to	provide	should	be
given	to	each	institution.	Some	will	want	to	continue	to	use	a	familiar	H.264	encoding	pipeline.	Others
will	want	to	take	advantage	of	the	cost	savings	of	new	formats	and	migrate.	There	ought	to	be
allowance	for	each	institution	to	pick	which	formats	best	meet	their	needs.	Since	sources	in	HTML5
media	can	be	listed	in	order	of	preference,	in	as	much	as	is	possible	a	standard	ought	to	support	the
ability	of	a	client	to	respect	the	preferences	of	the	institution	for	these	reasons.	So	if	WebM	VP9	is	the
first	source	and	the	browser	can	play	that	format	it	should	play	it	even	if	an	MP4	H.264	is	available
which	it	can	also	play.	The	institution	may	make	decisions	around	the	quality	to	provide	for	each
format	to	optimize	for	their	particular	content	and	intended	uses.

Then	there	is	the	choice	to	implement	adaptive	bitrate	streaming.	Again	institutions	could	decide	to
implement	these	formats	for	a	variety	of	reasons.	Delivering	the	appropriate	adaptation	for	the
situation	has	benefits	beyond	just	enabling	smooth	playback.	By	delivering	only	the	segment	size	a
client	can	use	based	on	network	conditions	and	sometimes	player	size,	the	segments	can	be	much
smaller	lowering	bandwidth	costs.	The	institution	can	make	a	decision	depending	on	their
implementation	and	use	patterns	whether	their	costs	are	more	with	storage	or	bandwidth	and	use	the
formats	that	work	best	for	them.	It	can	also	be	a	courtesy	to	mobile	users	to	deliver	smaller	segment
sizes.	Then	there	are	delivery	platforms	where	an	adaptive	bitrate	format	is	required.	Apple	requires
iOS	applications	to	deliver	HLS	for	any	video	over	ten	minutes	long.	Any	of	these	types	of
considerations	might	nudge	an	AV	provider	to	use	ABR	formats.	They	add	complexity	but	also	come
with	attractive	performance	benefits.

Any	solution	for	an	API	for	AV	media	should	not	try	to	pick	winners	among	codecs	or	formats.	The
choice	should	be	left	to	the	institution	while	still	allowing	them	to	share	the	media	in	these	formats
with	other	institutions.	It	should	allow	for	sharing	AV	in	whatever	formats	an	institution	chooses.	An
approach	which	restricts	which	codecs	and	formats	can	be	shared	does	harm	and	closes	off
important	considerations	for	publishers.	Asking	them	to	deliver	too	many	duplicate	versions	will	also
mean	forcing	certain	costs.	Will	this	variety	of	codecs	allow	for	complete	interoperability	from	every
institution	to	every	other	institution	and	user?	Probably	not,	but	the	tendency	will	be	for	institutions	to
do	what	is	needed	to	support	a	broad	range	of	browsers	while	optimizing	for	their	particular	needs.



Guidelines	and	evolving	best	practices	can	also	be	part	of	any	community	built	around	the	API.	A
standard	for	AV	sharing	should	not	shut	off	options	while	allowing	for	a	community	of	practice	to
develop.

Simple	API

If	an	institution	is	able	to	deliver	any	of	their	video	on	the	web,	then	that	is	an	accomplishment.	What
could	be	provided	to	allow	them	to	most	easily	share	their	video	with	other	institutions?	One	simple
approach	would	be	for	them	to	create	a	URL	where	they	can	publish	information	about	the	video.
Some	JSON	with	just	enough	technical	information	could	map	to	the	properties	an	HTML5	video
player	uses.	Since	it	is	still	the	case	that	many	institutions	are	publishing	multiple	versions	of	each
video	in	order	to	cover	the	variety	of	new	and	old	browsers	and	mobile	devices,	it	could	include	a	list
of	these	different	video	sources	in	a	preferred	order.	Preference	could	be	given	to	an	adaptive	bitrate
format	or	newer,	more	efficient	codec	like	VP9	with	an	MP4	fallback	further	down	the	list.	Since	each
video	source	listed	includes	a	URL	to	the	media,	the	media	file(s)	could	live	anywhere.	Hybrid	delivery
mechanisms	are	even	possible	where	different	servers	are	used	for	different	formats	or	the	media	are
hosted	on	different	domains	or	use	CDNs.

This	ability	to	just	list	a	URL	to	the	media	would	mean	that	as	institutions	move	to	cloud	hosting	or
migrate	to	a	new	video	server,	they	only	need	to	change	a	little	bit	of	information	in	a	JSON	file.	This
greatly	simplifies	the	kind	of	technical	infrastructure	that	is	needed	to	support	the	basics	of	video
sharing.	The	JSON	information	file	could	be	a	static	file.	No	need	even	for	redirects	for	the	video	files
since	they	can	live	wherever	and	change	location	over	time.

Here	is	an	example	of	what	part	of	a	typical	response	might	look	like	where	a	WebM	and	an	MP4	are
published:

{
		"sources":	[
				{
						"id":	"https://iiif-staging02.lib.ncsu.edu/iiifv/pets/pets-720x480.webm"
						"format":	"webm",
						"height":	480,
						"width":	720,
						"size":	"3360808",
						"duration":	"35.627000",
						"type":	"video/webm;	codecs=\"vp8,vorbis\"",
				},
				{
						"id":	"https://iiif-staging02.lib.ncsu.edu/iiifv/pets/pets-720x480.mp4"
						"format":	"mp4",
						"frames":	"1067",



						"height":	480,
						"width":	720,
						"size":	"2924836",
						"duration":	"35.627000",
						"type":	"video/mp4;	codecs=\"avc1.42E01E,mp4a.40.2\"",
				}
		]
}

You	can	see	an	example	of	this	"sources"	approach	here.

An	approach	that	simply	lists	the	available	sources	an	institution	makes	available	for	delivery	ought	to
be	easier	for	more	institutions	over	other	options	for	sharing	AV.	It	would	allow	them	to	effectively
share	the	whole	range	of	the	types	of	audio	and	video	they	already	have	no	matter	what	technologies
they	are	currently	using.	In	the	simplest	cases	there	would	be	no	need	for	even	redirects.	If	you	are
optimizing	for	widest	possible	sharing	from	the	most	institutions,	then	an	approach	along	these	lines
ought	to	be	considered.

Straight	to	AV	in	the	Presentation	API?

One	interesting	option	has	been	proposed	for	IIIF	to	move	forward	with	supporting	AV	resources.	This
approach	is	presented	in	What	are	Audio	and	Video	Content	APIs?.	The	mechanism	is	to	list	out
media	sources	similar	to	the	above	approach	but	on	a	canvas	within	a	Presentation	API	manifest.	The
pattern	appears	clear	for	how	to	provide	a	list	of	resources	in	a	manifest	in	this	way.	It	would	not
require	a	specific	AV	API	that	tries	to	optimize	for	the	wrong	concerns.	The	approach	still	has	some
issues	that	may	impede	sharing.

Requiring	an	institution	to	go	straight	to	implementing	the	Presentation	API	means	that	nothing	is
provided	to	share	AV	resources	outside	of	a	manifest	or	a	canvas	that	can	be	referenced	separate
from	a	Presentation	manifest.	Not	every	case	of	sharing	and	reuse	requires	the	complexity	of	a
Presentation	manifest	in	order	to	just	play	back	a	video.	There	are	many	use	cases	that	do	not	need	a
sequence	with	a	canvas	with	media	with	an	annotation	with	a	body	with	a	list	of	items--a	whole	highly
nested	structure,	just	to	get	to	the	AV	sources	needed	to	play	back	some	media.	This	breaks	the
pattern	from	the	Image	API	where	it	is	easy	and	common	to	view	an	image	without	implementing
Presentation	at	all.	Only	providing	access	to	AV	through	a	Presentation	manifest	lacks	simplicity
which	would	allow	an	institution	to	level	up	over	time.	What	is	the	path	for	an	institution	to	level	up
over	time	and	incrementally	adopt	IIIF	standards?	Even	if	a	canvas	could	be	used	as	the	AV	API	as	a
simplification	over	a	manifest,	requiring	a	dereferenceable	canvas	would	further	complicate	what	it
takes	to	implement	IIIF.	Even	some	institutions	that	have	implemented	IIIF	and	see	the	value	of	a

https://github.com/IIIF/iiif-av/issues/50#issuecomment-257617223
https://gist.github.com/tomcrane/34180dc6c5c1caf7e244ffd12e64c389#benefits-of-the-image-api-approach


dereferenceable	canvas	have	not	gotten	that	far	yet	in	their	implementations.

One	of	the	benefits	I	have	found	with	the	Image	API	is	the	ability	to	view	images	without	needing	to
have	the	resource	described	and	published	to	the	public.	This	allows	me	to	check	on	the	health	of
images,	do	cache	warming	to	optimize	delivery,	and	use	the	resources	in	other	pre-publication
workflows.	I	have	only	implemented	manifests	and	canvases	within	my	public	interface	once	a
resource	has	been	published,	so	would	effectively	be	forced	to	publish	the	resource	prematurely	or
otherwise	change	the	workflow.	I	am	guessing	that	others	have	also	implemented	manifests	in	such	a
way	that	is	tied	to	their	public	interfaces.

Coupling	of	media	access	with	a	manifest	has	some	other	smaller	implications.	Requiring	a	manifest
or	canvas	leads	to	unnecessary	boilerplate	when	an	institution	does	not	have	the	information	yet	and
still	needs	access	to	the	resources	to	prepare	the	resource	for	publication.	For	instance	a	manifest
and	a	canvas	MUST	have	a	label.	Should	they	use	"Unlabeled"	in	cases	where	this	information	is	not
available	yet?

In	my	own	case	sharing	with	the	world	is	often	the	happy	result	rather	than	the	initial	intention	of
implementing	something.	For	instance	there	is	value	in	an	API	that	supports	different	kinds	of	internal
sharing.	Easy	internal	sharing	enables	us	to	do	new	things	with	our	resources	more	easily	regardless
of	whether	the	API	is	shared	publicly.	That	internal	sharing	ought	to	be	recognized	as	an	important
motivator	for	adopting	IIIF	and	other	standards.	IIIF	thus	far	has	enabled	us	to	more	quickly	develop
new	applications	and	functionality	that	reuse	special	collections	image	resources.	Not	every	internal
use	will	need	or	want	the	features	found	in	a	manifest,	but	just	need	to	get	the	audio	or	video	sources
to	play	them.

If	there	is	no	IIIF	AV	API	that	optimizes	for	the	sharing	of	a	range	of	different	AV	formats	and	instead
relies	on	manifests	or	canvases,	then	there	is	still	a	gap	that	could	be	filled.	For	at	least	local	use	I
would	want	some	kind	of	AV	API	in	order	to	get	the	technical	information	I	would	need	to	embed	in	a
manifest	or	canvas.	This	seems	like	it	could	be	a	common	desire	to	decouple	technical	information
about	video	resources	from	the	fuller	information	needed	for	a	manifest	including	attributes	like	labels
needed	for	presentation	with	context	to	the	public.	Coupling	AV	access	too	tightly	to	Presentation
does	not	help	to	solve	the	desire	to	decouple	these	technical	aspects.	It	is	a	reasonable	choice	to
consider	this	technical	information	a	separate	concern.	And	if	I	am	already	going	through	the	work	to
create	such	an	internal	AV	API,	I	would	like	to	be	able	to	make	this	API	available	to	share	my	AV
resources	outside	of	a	manifest	or	canvas.

Then	there	is	also	the	issue	of	AV	players.	In	the	case	of	images	many	pan	zoom	image	viewers	were
modified	to	work	with	the	Image	API.	One	of	the	attractions	to	delivery	images	via	IIIF	or	adopting	a
IIIF	image	server	is	that	there	is	choice	in	viewers.	Is	the	expectation	that	any	AV	players	would	need



to	read	in	a	Presentation	manifest	or	canvas	in	order	to	support	IIIF	and	play	media?	The	complexity
of	the	manifest	and	canvas	documents	may	hinder	adoption	IIIF	in	media	players.	These	are	rather
complicated	documents	that	take	some	time	to	understand.	A	simpler	API	than	Presentation	may
have	a	better	chance	to	be	more	widely	adopted	for	players	and	easier	to	maintain.	We	only	have	the
choice	of	a	couple	featureful	client	side	applications	for	presenting	manifests	(UniversalViewer	and
Mirador),	but	we	already	have	many	basic	viewers	for	the	Image	API.	Even	though	not	all	of	those
basic	viewers	are	used	within	the	likes	of	UniversalViewer	and	Mirador,	the	simpler	viewers	have	still
been	of	value	for	other	use	cases.	For	instance	a	simple	image	viewer	can	be	used	in	a	metadata
management	interface	where	UniversalViewer	features	like	the	metadata	panel	and	download	buttons
are	unnecessary	or	distracting.	Would	the	burden	of	maintaining	plugins	and	shims	for	various	AV
players	to	understand	a	manifest	or	canvas	rest	with	the	relatively	small	IIIF	community	rather	than
with	the	larger	group	of	maintainers	of	AV	players?	Certainly	having	choice	is	part	of	the	benefit	of
having	the	Image	API	supported	in	many	different	image	viewers.	Would	IIIF	still	have	the	goal	of
being	supported	by	a	wide	range	of	video	players?	This	ability	to	have	broad	support	within	some	of
the	foundational	pieces	like	media	players	allows	for	better	experimentation	on	top	of	it.

My	own	implementation	of	the	Image	API	has	shown	how	having	a	choice	of	viewers	can	be	of	great
benefit.	When	I	was	implementing	the	IIIF	APIs	I	wanted	to	improve	the	viewing	experience	for	users
by	using	a	more	powerful	viewer.	I	chose	UniversalViewer	even	though	it	did	not	have	a	very	good
mobile	experience	at	the	time.	We	did	not	want	to	give	up	the	decent	mobile	experience	we	had
previously	developed.	Moving	to	only	using	UV	would	have	meant	giving	up	on	mobile	use.	So	that
we	could	still	have	a	good	mobile	interface	while	UV	was	in	the	middle	of	improving	its	mobile	view,
we	also	implemented	a	Leaflet-based	viewer	alongside	UV.	We	toggled	each	viewer	on/off	with	CSS
media	queries.	This	level	of	interoperability	at	this	lower	level	in	the	viewer	allowed	us	to	take
advantage	of	multiple	viewers	while	providing	a	better	experience	for	our	users.	You	can	read	more
about	this	in	Simple	Interoperability	Wins	with	IIIF.	As	AV	players	are	uneven	in	their	support	of
different	features	this	kind	of	ability	to	swap	out	one	player	for	another,	say	based	on	video	source
type,	browser	version,	or	other	features,	may	be	particularly	useful.	We	have	also	seen	new	tools	for
tasks	like	cropping	grow	up	around	the	Image	API	and	it	would	be	good	to	have	a	similar	situation	for
AV	players.

So	while	listing	out	sources	within	a	manifest	or	canvas	would	allow	for	institutions	with
heterogeneous	formats	to	share	their	distributed	AV	content,	the	lack	of	an	API	that	covers	these
formats	results	in	some	complication,	open	questions,	and	less	utility.

Conclusion

IIIF	ought	to	focus	on	solving	the	right	challenges	for	audio	and	video.	There	is	no	sense	in	trying	to

http://ronallo.com/blog/simple-interoperability-wins-with-iiif/


solve	the	performance	challenges	of	AV	delivery.	That	work	has	been	well	done	already	by	the	larger
AV	community	and	industry.	The	parameterized	approach	to	an	AV	API	does	not	bring	significant
delivery	performance	gains	though	that	is	the	only	conceivable	benefit	to	the	approach.	The
parameterized	approach	does	not	sufficiently	help	make	it	easier	for	smaller	institutions	to	share	their
video.	It	does	not	provide	any	help	at	all	to	institutions	that	are	trying	to	use	current	best	practices	like
adaptive	bitrate	formats.

Instead	IIIF	should	focus	on	achieving	ubiquitous	sharing	of	media	across	many	types	of	institutions.
The	focus	on	solving	the	challenges	with	sharing	media	and	the	complexity	and	costs	with	delivering
AV	resources	leads	to	meeting	institutions	more	where	they	are	at.	A	simple	approach	to	an	AV	API
that	lists	out	the	sources	would	more	readily	solve	the	challenges	institutions	will	face	with	sharing.

Optimizing	for	sharing	leads	to	different	conclusions	than	optimizing	for	performance.


